↳ ITRS
↳ ITRStoIDPProof
z
eval(x, y, z) → Cond_eval(>@z(x, +@z(y, z)), x, y, z)
Cond_eval(TRUE, x, y, z) → eval(x, +@z(y, 1@z), +@z(z, 1@z))
eval(x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
eval(x, y, z) → Cond_eval(>@z(x, +@z(y, z)), x, y, z)
Cond_eval(TRUE, x, y, z) → eval(x, +@z(y, 1@z), +@z(z, 1@z))
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(y[0] →* y[1])∧(>@z(x[0], +@z(y[0], z[0])) →* TRUE))
(1) -> (0), if ((+@z(y[1], 1@z) →* y[0])∧(+@z(z[1], 1@z) →* z[0])∧(x[1] →* x[0]))
eval(x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(y[0] →* y[1])∧(>@z(x[0], +@z(y[0], z[0])) →* TRUE))
(1) -> (0), if ((+@z(y[1], 1@z) →* y[0])∧(+@z(z[1], 1@z) →* z[0])∧(x[1] →* x[0]))
eval(x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
(1) (EVAL(x[0], y[0], z[0])≥NonInfC∧EVAL(x[0], y[0], z[0])≥COND_EVAL(>@z(x[0], +@z(y[0], z[0])), x[0], y[0], z[0])∧(UIncreasing(COND_EVAL(>@z(x[0], +@z(y[0], z[0])), x[0], y[0], z[0])), ≥))
(2) ((UIncreasing(COND_EVAL(>@z(x[0], +@z(y[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(>@z(x[0], +@z(y[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) ((UIncreasing(COND_EVAL(>@z(x[0], +@z(y[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(>@z(x[0], +@z(y[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(6) (+@z(z[1], 1@z)=z[0]1∧+@z(y[1], 1@z)=y[0]1∧x[1]=x[0]1∧>@z(x[0], +@z(y[0], z[0]))=TRUE∧y[0]=y[1]∧x[0]=x[1]∧z[0]=z[1] ⇒ COND_EVAL(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1], z[1])≥EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))∧(UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥))
(7) (>@z(x[0], +@z(y[0], z[0]))=TRUE ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(x[0], +@z(y[0], 1@z), +@z(z[0], 1@z))∧(UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥))
(8) (x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0∧1 ≥ 0)
(9) (x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0∧1 ≥ 0)
(10) (x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ -1 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0∧(UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥)∧1 ≥ 0)
(11) (y[0] ≥ 0 ⇒ (-1)Bound + y[0] ≥ 0∧(UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥)∧1 ≥ 0)
(12) (y[0] ≥ 0∧z[0] ≥ 0 ⇒ (-1)Bound + y[0] ≥ 0∧(UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥)∧1 ≥ 0)
(13) (y[0] ≥ 0∧z[0] ≥ 0 ⇒ (-1)Bound + y[0] ≥ 0∧(UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥)∧1 ≥ 0)
(14) (y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (-1)Bound + y[0] ≥ 0∧(UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥)∧1 ≥ 0)
(15) (y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (-1)Bound + y[0] ≥ 0∧(UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥)∧1 ≥ 0)
(16) (y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (-1)Bound + y[0] ≥ 0∧(UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥)∧1 ≥ 0)
(17) (y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (-1)Bound + y[0] ≥ 0∧(UIncreasing(EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))), ≥)∧1 ≥ 0)
POL(TRUE) = 0
POL(+@z(x1, x2)) = x1 + x2
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x3 + x2
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + x1
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL(TRUE, x[1], y[1], z[1]) → EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))
COND_EVAL(TRUE, x[1], y[1], z[1]) → EVAL(x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))
EVAL(x[0], y[0], z[0]) → COND_EVAL(>@z(x[0], +@z(y[0], z[0])), x[0], y[0], z[0])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
eval(x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)